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Caveats

* Other people’s work

» Mostly Celera work
— Eugene Myers, Ham Smith, et al.
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Problem Statement

* Human (and other mammalian) genomes
are approx. 3 billion base pairs long

» Sequencing machines can generate
sequences for fragments 500-600 bp long

» How sequence human/mouse genome, 500
bp at a time?
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Directed Sequencing

» Generate sequence primer

» Run sequencing reaction from genomic DNA,
starting from known primer

» Read sequence (500-600 bp)

 Generate next sequence primer

* Repeat

» Expensive (custom primers), slow (sequential)
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Shotgun Sequencing

Extract DNA
Fragment DNA
Clone DNA

Sequence both ends of clones
— (500-600 bp each read)
Assemble

 Finish sequencing (close gaps)
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Two approaches

 Hierarchical top-down approach

— Basic strategy of public Human Genome
Project (1988 - 2000)

* Whole Genome Shotgun Sequencing

— Celera strategy for Drosophila and Human
Genome (1999-2000)
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Hierarchical Top Down
Sequencing Strategy

» Sort chromosomes

» For each chromosome clone large fragments
of DNA

» Map clones

* Identify spanning set of clones
 Shotgun sequence each clone
* Finish (close gaps)
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Whole Genome Shotgun
Sequencing

Take entire human genome

Construct 3 different sized clone libraries

Sequence both ends of each clones

Assemble entire genome

Finish (close gaps)
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Hierarchical Top-Down Strategy

 Conservative older approach
» Mapping (was) cheaper than sequencing
» Assembly computations are easier

 Incremental effort generates useful partial
results.
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Whole Genome Sequencing Won

» Sequencing became cheap, more accurate

» Sequence more informative (and reliable)
than mapping info

« Simpler protocol, easier to automate

» Double ended sequencing, multiple size
libraries helped cope with repetitive DNA
and gaps

« Assembly computational became feasible

8/10/01 Olken - PGA Talk 10




Ongoing Strategy Debate

» Mouse will proceed with hierarchical
approach

» Apparently due to difficulty in creating
uniform coverage clone library for WGSS.

 Celera, and many others believe WGSS is
preferred approach (faster/cheaper).

8/10/01 Olken - PGA Talk 11

Remainder of Talk

» How to actually implement shotgun
sequencing

» Based primarily on work of Gene Myers, et
al. At Celera Corp.

« Last part will concern parallelization issues
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WGSS Biology

Construct 3 clone libraries

Multiple insert sizes:
— 1 Mbp, 50 Kbp, 10 Kbp

Size selection of inserts via gel
electrophoresis (prior to cloning)

Careful library construction to assure
uniform coverage
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WGSS Innovations

* Double ended sequencing
» Multiple size clone libraries
* Size selection

 Capillary electrophoresis sequencing
machines ==> few lane crossing errors

» Longer reads circumvent Alu’s

* More accurate reads
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Major innovations

Double ended reads

* Novel assembly algorithms

» Massive compute facilities for assembly
Estimate: 20K CPU hours per assembly
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Shotgun Sequence Assembly

» Has become routine in smaller organisms
« Difficult for large genomes
* Principal problem = repetititve DNA
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Shotgun Sequence Assembly

Data = sequence overlaps

Overlaps ==> local order (up to reflection)

Combine local info to get global order (upto
reflection)

Resolve reflection via physical mapping
(FISH, etc.)
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Shotgun Sequence Assembly

« Compute the overlap graph
« Compute graph layout (linearization)

« Consensus sequence generation
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A Digression on Graph Theory

Graph representation

— edge list vs. incidence matrix

Interval Graphs

— idealization of overlap graph, characterization

Overlap Graph

Probe Clone Incidence Graphs
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Graph representation

» Edge List
— list of edges
— directed edge = (from vertex, to vertex)
— good for sparse graphs

* Incidence Matrix

— A (1,)) = 1 if there is an edge from vertex i to
vertex j.

— good for dense graphs, fast computations
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Overlap Graph

» Vertices = sequence reads

» Edges between two vertices if
corresponding sequences overlap

— note that we also have to consider alternate
strands = reverse complement sequence
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Probe Clone Incidence Graph

Probes = short unique subsequences

Clones = sequence reads

Incidence - probe is contained in clone

Asymmetric matrix = bipartite graph
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Human Chromosomes are Linear

* Not circular

» DNA sequence can be mapped onto an
interval onto an interval of the integers

» DNA sequence contains no cycles
* DNA sequence contains no branches
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Interval Graphs

Ideal overlap graph is an interval graph

Interval graph is graph imputed from set of
overlapping intervals on real line

No cycles

No holes (all subraphs of size four have a
diagonal edge)
* No branches
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Consecutive One’s Property

 There exists a permutation of the incidence
matrix representation of the overlap graph
such that all of the 1’s for a clone (read) are
consecutive (no intervening 0°s)
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Consecutive One’s Property

« Example

(11 1100000)
(01 1110000)
(00 1111000)
(00 0111100)
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Interval Graph Recognition

 Testing to see if a graph is an interval graph
can be done in O(E) time - I.e., time linear
in the number of edges on a serial machine

» Booth-Leuker algorithm from 1970’s
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Coverage Issues

Shotgun sequencing = random sampling of
read sequences

Goal 1s 10-12 X coverage
» Very expensive - tens millions of dollars

Actual human genome was 5-6X coverage

Higher coverage ==> fewer, smaller gaps
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Overlap Graph Construction
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Naive Overlap Detection

 Pairwise comparison of all reads

O(n?) compute time, where n=# reads
n=6X * 3Bbp / 500 bp/read

n = 36 Million reads

n’ =144 *10**14
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Naive Overlap Detection (cont.)

Approx. string matching via Dynamic
Programming (Smith Waterman)

O(m*n), where m,n = string lengths = 500
O(mn) = 25,000
Assume 10 instruction in inner loop

Total CPU time =
— 5*10**20/1GHz = 5*10**11 cpu seconds
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Better Overlap Detection

» Low sequencing error rates implies that

* Overlaps will include many exact matches
of short DNA sequences

» Example:
— 20 bp subsequence is unique in human genome
— 20 bp * 0.1% error rate
— 98% exact matches for 20 bp sequences
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Linear Overlap Detection

Shred reads into overlapping k-mers (20 bp)
Build a hash-table of the k-mers

— hash function = remainder modulo prime no.
— Entry = (hash key, k-mer, read ID, offset)

Shred each read into overlapping k-mers

Look up each k-mer

Count k-mer matches for each read pair

 run DP approx string match for high scoring
pairs of reads
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Linear Overlap Detection (cont.)

This overlap detection algorithm requires
O(N) cpu time
where N = sum of lengths of all reads

Assume coverage, k, is finite (6X)
Space is also O(N)
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Improvements in Overlap
Detection

 Use disjoint k-mers for lookup (or table)

» Use only k-mers from both ends of reads for
lookups (Olken)

» Use (random) subset of k-mer values
(UMD)

» Space/time complexity still O(N), but
smaller constant
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Naive Parallel Overlap Detection

» Partition reads (randomly) among cpu’s.
* Build hash table for each partition.

» Broadcast reads to all cpu’s.

» Lookup in all partitions in parallel.

» Score number of exact matches.

* Run DP approx string match in parallel.
 Output overlaps
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Naive Parallel Overlap Detection

 Algorithm distributes reads across
processors effectively partitioning data.

» Permits one to handle very large datasets.
» However, trivial speedup in cpu time.

» Must search every k-mer against every
partition.
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Overlap Graph Construction Seen
as Join Algorithm
Construct (k-mer, read ID) tuples

Join on k-mers

» Group on read ID pairs

Count

Run DP approx. string match on high
scoring pairs
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Join-based Overlap Graph
Construction

* Joins of k-mers, grouping, etc. can be done
two ways

» Sort-merge based join (UMD, 2001)
* Distributive hash join (Olken, 2001)
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Sort-based Join

 Sort input records on join key (k-mers)

 Construct cross product (all pairs) of all
records with matching join keys

* Distributive Sort Join
— Sample join keys
— Distribute input data among cpu’s by join key
— Sort join in each cpu
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Distributive Hash Join

» Hash input records on join keys (k-mers)

 Construct cross product (all pairs) of
records with matching join keys
* Distributive Hash Join

— partition input records among cpu’s according
to hash(join key).

— Do Hash Join in each CPU
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Complexity of Join-based
Overlap Graph Construction

* Distributive Hash Join
— O (N) total work
— Linear speed up with number of processors

 Sort Join
— sort-merge = O(N*log(N)) work
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Overlap Graph Layout

Linearization of Overlap Graph
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Overlap Graph Layout

» Goal: linear ordering of sequence reads

* Input: overlap graph
— (plus mated read pair info)

— unit interval graph is easier

8/10/01
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Unit Interval Graph

Unit interval = interval graph where all
intervals are the same size

Sequence reads are (nearly) the same size

We are working with unit interval graph

Implication:
— no read contained within another read
— all reads extend to left or right of other reads
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Size of input data

Vertices = 6X * 3Gbp / 500 bp/read
Vertices = 18 Million

Edges =2 * 6X * 18M =216 M edges
Assume vertices denoted by 4 byte integer

Assume edges denoted by 2 x 4 bytes

Useful to store offsets for overlap edges
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Basic Approach
» Bottom up construction

» Use most reliable data first

— better a partial layout than an erroneous one
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Transitive Closure of a Graph

(a,b) and (b,c) implies (a,c)
a.k.a. reachability graph

Add edge (a,c) if there exists a path from a
to ¢

» Assume directed graph
» Used in computing airline ticketing
* Many other applications
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Transitive Reduction of a Graph

* Inverse operation to transitive closure

« H=TR(G) is the minimal subgraph of G
such that TC(H) contains G

» Assume G is a directed graph

» TC = transitive closure

» TR = transitive reduction

» Remove all edges which can be inferred
from remaining edges
8/10/01 Ol - PGA Talk
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Transitive Reduction

 Transitive reduction of unit interval graph =
unique order linear graph (in interval order)

 Transitive reduction of an ideal overlap
graph gives us the desired graph layout
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Computing Transitive Reduction

* TR removes redundant edges

* We can use offset information to facilitate
TR computation (by finding cliques)

» Max. path length is bounded due to finite
coverage
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Alternative approach to reduction
of overlap graph

» By Olken, 2001
* Identify & contract cliques in overlap graph

 Cliques = maximal complete subgraphs

— every vertex is connected to every other vertex
in the clique

— no larger complete subgraph exists which
contains the clique
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Clique Detection & Contraction

« Identify cliques in overlap graph
— Construct unique probes from ends of reads
— Probe the reads (test for containment)

— Set of reads which contain unique probe forms
a clique (maximal complete subgraph) of
overlap graph

 Contract cliques
» Reduces graph size by coverage factor

8/10/01 Olken - PGA Talk 53

Contraction of unique linear
subgraphs
* After transitive reduction we should have a
simple ordered list

 Reality = branches exist due to false
overlaps

 Contract unique linear subgraphs (unitigs)

 Facilitates subsequent processing of
branches
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After computing transitive
reduction

e We still have to deal with
— false overlaps

* from repeats

* from chimeric clones
— missing data

* generates gaps

* missing overlaps ==> non-interval graph
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Branches in Overlap Graph

» May be able to resolve via inconsistent

sequence overlap info - overlap stops in
middle of read

» Otherwise use Kececioglu’s clustering
technique to split up sets false overlaps due
to repetitive DNA

« If all else fails delete repetitive DNA and
use mated pair info to order contigs
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Repetitive DNA

» Many kinds, vary in number of repeats,
length, degree of similarity, tandem vs. non-
tandem

* Alu’s =300 bp, 100K copies
 Lines, Sines - longer, fewer copies

* Gene duplications - (> 1 Kbp), few copies
each
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Repetitive DNA 1s a problem

» Generates false overlaps

* Introduces
— sequence compression (true seq is longer)
— topological problems in layout graph
— non-chordal subgraphs (donuts)

— branches in sequence
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Identifying Repetitive DNA

« Common repeats are catalogued
—e.g., Alu’s, Lines, Sines, ....

Unusually high numbers of overlaps
— (should be approx K = coverage).

Anomalous overlaps
— broken in middle of reads

Inconsistencies in overlap graph layout -
— branches, cycles, donuts
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Dealing with Repetitive DNA

« Identify putative repeat sequences

* Cluster repetitive seqs on differing positions
* Recompute overlap graph

* Recompute graph layout

» Check for topological errors

* Loop

» See Kececioglu paper at RECOMB 2001
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Dealing with Heterozygosity

* Humans have diploid genome
— 2 copies of chromosomes (not (X,Y) in males)

» Heterozygotic
— 2 different genes (one from each parent)

— will not assemble as a single linear
chromosome

— unresolvable branches, donuts

— find via clustering (Kececioglu)
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Scaffold Construction

Scaffolding = ordering via mated read pairs
from ends of clones

Used to span gaps (repeats, missing data)
Use smaller clone mates first

Use multiple mate pairs info first

Mate info includes est. of gap distance

Gives adjacency information at contig level
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Anchoring to Chromosome Maps

* Final “scaffolding” is mapping onto known
chromosome maps

» Anchor via mapped Sequence Tagged Sites

At least two such anchor points are needed
to orient sequence on chromosome
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Parallelization of Graph Layout

» Observe that shotgun sequencing generates
many disjoint connected components (CC)

Disjoint connected components can be
processed in parallel

Perform parallel CC labeling

Move each CC to a single cpu

Apply serial graph layout to each CC
by Olken, 2001

8/10/01 Olken - PGA Talk 64

32



Consenus Sequence Generation
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Consensus Sequence Generation

» Multiple Sequence Alignment

» Voting = nucleotide estimation for each
column in multiple sequence alignment
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Multiple Sequence Alignment

» High read accuracy reads - eases MSA
* Optimal algorithm is NP hard
« Common practice = greedy clustering

— compute pairwise alignments

— merge most similar pair of sequences (or
alignments)

— update consensus sequence estimate

— iterate (hierarchical clustering)
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Multiple Sequence Alignment

 For tractability and parallelism

» Break apart MSA problem into smaller
problems
— horizontal partitioning at “gaps”

* gaps either natural or induced
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Voting

* Need to estimate nucleotide for each
column in the MSA

* Classically use plurality voting in each
column

* If we have reliability info for each position
from sequence trace analyzer we can be
more sophisticated
— weighted voting, MLE, Bayesian
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Finishing

» Shotgun sequencing leaves many small gaps
» Small gaps

— span via PCR from genomic DNA

— if contigs are unordered use PCR pooling
e Larger gaps

— for ordered contigs retrieve spanning clone

— shotgun or directed sequence the spanning
clone
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Conclusions
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Whole Genome Shotgun
Sequencing

 Preferred strategy for large scale sequencing
« Computations are feasible

» Repetitive DNA is the chief difficulty in
assembly

» Requires reads from both ends of clones

« Computation can be fully parallelized on
distributed memory machines
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